Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 101, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566204

RESUMO

BACKGROUND: Regulatory B cells (Bregs), a specialized subset of B cells that modulate immune responses and maintain immune tolerance in malignant tumors, have not been extensively investigated in the context of bladder cancer (BLCA). This study aims to elucidate the roles of Bregs and Breg-related genes in BLCA. METHODS: We assessed Breg infiltration levels in 34 pairs of BLCA and corresponding paracancerous tissues using immunohistochemical staining. We conducted transwell and wound healing assays to evaluate the impact of Bregs on the malignant phenotype of SW780 and T24 cells. Breg-related genes were identified through gene sets and transcriptional analysis. The TCGA-BLCA cohort served as the training set, while the IMvigor210 and 5 GEO cohorts were used as external validation sets. We employed LASSO regression and random forest for feature selection and developed a risk signature using Cox regression. Primary validation of the risk signature was performed through immunohistochemical staining and RT-qPCR experiments using the 34 local BLCA samples. Additionally, we employed transfection assays and flow cytometry to investigate Breg expansion ability and immunosuppressive functions. RESULTS: Breg levels in BLCA tissues were significantly elevated compared to paracancerous tissues (P < 0.05) and positively correlated with tumor malignancy (P < 0.05). Co-incubation of SW780 and T24 cells with Bregs resulted in enhanced invasion and migration abilities (all P < 0.05). We identified 27 Breg-related genes, including CD96, OAS1, and CSH1, which were integrated into the risk signature. This signature demonstrated robust prognostic classification across the 6 cohorts (pooled HR = 2.25, 95% CI = 1.52-3.33). Moreover, the signature exhibited positive associations with advanced tumor stage (P < 0.001) and Breg infiltration ratios (P < 0.05) in the local samples. Furthermore, the signature successfully predicted immunotherapeutic sensitivity in three cohorts (all P < 0.05). Knockdown of CSH1 in B cells increased Breg phenotype and enhanced suppressive ability against CD8 + T cells (all P < 0.05). CONCLUSIONS: Bregs play a pro-tumor role in the development of BLCA. The Breg-related gene signature established in this study holds great potential as a valuable tool for evaluating prognosis and predicting immunotherapeutic response in BLCA patients.


Assuntos
Linfócitos B Reguladores , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Linfócitos T CD8-Positivos , Citometria de Fluxo , Imunoterapia , Prognóstico
2.
Mol Cancer ; 23(1): 52, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461272

RESUMO

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Assuntos
MicroRNAs , Células Supressoras Mieloides , RNA Circular , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Supressoras Mieloides/metabolismo , Proteínas Quinases/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Exossomos/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
Cancer Sci ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422408

RESUMO

Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.

4.
Drug Resist Updat ; 73: 101059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295753

RESUMO

Patients with bladder cancer (BCa) frequently acquires resistance to platinum-based chemotherapy, particularly cisplatin. This study centered on the mechanism of cisplatin resistance in BCa and highlighted the pivotal role of lactylation in driving this phenomenon. Utilizing single-cell RNA sequencing, we delineated the single-cell landscape of Bca, pinpointing a distinctive subset of BCa cells that exhibit marked resistance to cisplatin with association with glycolysis metabolism. Notably, we observed that H3 lysine 18 lactylation (H3K18la) plays a crucial role in activating the transcription of target genes by enriching in their promoter regions. Targeted inhibition of H3K18la effectively restored cisplatin sensitivity in these cisplatin-resistant epithelial cells. Furthermore, H3K18la-driven key transcription factors YBX1 and YY1 promote cisplatin resistance in BCa. These findings enhance our understanding of the mechanisms underlying cisplatin resistance, offering valuable insights for identifying novel intervention targets to overcome drug resistance in Bca.


Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Histonas/genética , Histonas/metabolismo , Análise da Expressão Gênica de Célula Única , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
5.
NPJ Precis Oncol ; 8(1): 11, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225404

RESUMO

Circular RNAs (circRNAs) are a family of endogenous RNAs that have become a focus of biological research in recent years. Emerging evidence has revealed that circRNAs exert biological functions by acting as transcriptional regulators, microRNA sponges, and binding partners with RNA-binding proteins. However, few studies have identified coding circRNAs, which may lead to a hidden repertoire of proteins. In this study, we unexpectedly discovered a protein-encoding circular RNA circCCDC7(15,16,17,18,19) while we were searching for prostate cancer related chimeric RNAs. circCCDC7(15,16,17,18,19) is derived from exon 19 back spliced to exon 15 of the CCDC7 gene. It is significantly downregulated in patients with high Gleason score. Prostate cancer patients with decreased circCCDC7(15,16,17,18,19) expression have a worse prognosis, while linear CCDC7 had no such association. Overexpressed circCCDC7(15,16,17,18,19) inhibited prostate cancer cell migration, invasion, and viability, supporting classification of circCCDC7(15,16,17,18,19) as a bona fide tumor suppressor gene. We provide evidence that its tumor suppressive activity is driven by the protein it encodes, and that circCCDC7(15,16,17,18,19) encodes a secretory protein. Consistently, conditioned media from circCCDC7(15,16,17,18,19) overexpressing cells has the same tumor suppressive activity. We further demonstrate that the tumor suppressive activity of circCCDC7(15,16,17,18,19) is at least partially mediated by FLRT3, whose expression also negatively correlates with Gleason score and clinical prognosis. In conclusion, circCCDC7(15,16,17,18,19) functions as a tumor suppressor in prostate cancer cells through the circCCDC7-180aa secretory protein it encodes, and is a promising therapeutic peptide for prostate cancer.

6.
Mol Cancer ; 23(1): 4, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184608

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS: High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS: In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS: Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Processamento Alternativo , RNA Circular/genética , MicroRNAs/genética , Neoplasias Renais/genética , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Citocromo P-450 CYP1B1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética
7.
Aging (Albany NY) ; 15(12): 5355-5380, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37379131

RESUMO

BACKGROUND: B cells are essential components of tumor microenvironment and exert important functions in anti-tumor immune response. However, the prognosis value of B cell-related genes in bladder cancer (BLCA) remains obscure. MATERIALS AND METHODS: The infiltrating levels of B cells were measured via the CD20 staining in the local samples and the computational biology analyses in the TCGA-BLCA cohort. The single-cell RNA sequencing analysis, gene-pair strategy, LASSO regression, random forest, and Cox regression were used for B cell-related signature construction. TCGA-BLCA cohort was chosen as the training cohort, and three independent cohorts from GEO and the local cohort were used for external validation. 326 B cells were adopted to explore the association between the model and B cells' biological processes. TIDE algorithm and two BLCA cohorts receiving anti-PD1/PDL1 treatment were utilized to detect its predictive ability to the immunotherapeutic response. RESULTS: High infiltration levels of B cells heralded favorable prognosis, both in the TCGA-BLCA cohort and the local cohort (all P < 0.05). A 5-gene-pair model was established and served as a significant prognosis predictor across multiple cohorts (pooled hazard ratio = 2.79, 95% confidence interval = 2.22-3.49). The model could evaluate the prognosis effectively in 21 of 33 cancer types (P < 0.05). The signature was negatively associated with B cells' activation, proliferation, and infiltrating levels, and could serve as a potential predictor of immunotherapeutic outcomes. CONCLUSIONS: A B cell-related gene signature was constructed to predict the prognosis and immunotherapeutic sensitivity in BLCA, helping to guide the personalized treatment.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Prognóstico , Algoritmos , Linfócitos B , Imunoterapia , Microambiente Tumoral/genética
8.
Bioeng Transl Med ; 8(3): e10515, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206228

RESUMO

Bladder cancer (BCa) is one of the most common malignancies of the urinary tract. Metastasis and recurrence of BCa are the leading causes of poor prognosis, and only a few patients can benefit from current first-line treatments such as chemotherapy and immunotherapy. It is urgent to develop more effective therapeutic method with low side effects. Here, a cascade nanoreactor, ZIF-8/PdCuAu/GOx@HA (ZPG@H), is proposed for starvation therapy and ferroptosis of BCa. The ZPG@H nanoreactor was constructed by co-encapsulation of PdCuAu nanoparticles and glucose oxidase into zeolitic imidazolate framework-8 (ZIF-8) modified by hyaluronic acid. The vitro results indicated that ZPG@H enhanced intracellular reactive oxygen species levels and reduced mitochondrial depolarization in the tumor microenvironment. Therefore, the integrated advantages of starvation therapy and chemodynamic therapy endow ZPG@H with a perfect ferroptosis inducing ability. This effectiveness, combined with its excellent biocompatibility and biosafety, means that ZPG@H could make a critical contribution to the development of novel BCa treatments.

9.
Front Genet ; 14: 1136240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065473

RESUMO

As a special pattern of programmed cell death, ferroptosis is reported to participate in several processes of tumor progression, including regulating proliferation, suppressing apoptotic pathways, increasing metastasis, and acquiring drug resistance. The marked features of ferroptosis are an abnormal intracellular iron metabolism and lipid peroxidation that are pluralistically modulated by ferroptosis-related molecules and signals, such as iron metabolism, lipid peroxidation, system Xc-, GPX4, ROS production, and Nrf2 signals. Non-coding RNAs (ncRNAs) are a type of functional RNA molecules that are not translated into a protein. Increasing studies demonstrate that ncRNAs have a diversity of regulatory roles in ferroptosis, thus influencing the progression of cancers. In this study, we review the fundamental mechanisms and regulation network of ncRNAs on ferroptosis in various tumors, aiming to provide a systematic understanding of recently emerging non-coding RNAs and ferroptosis.

10.
Drug Resist Updat ; 68: 100938, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36774746

RESUMO

Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Epigênese Genética , Metilação , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
Funct Integr Genomics ; 23(1): 3, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527532

RESUMO

Senescent B cells exhibit reduced antibody production and enhanced proinflammatory cytokine and chemokine secretion, exerting non-negligible functions in antitumor immunity. This study aims to clarify the prognosis value of B cell senescence-related genes in bladder cancer (BLCA). Twelve B cell senescence-related genes were identified based on previous studies and the single-cell RNA sequencing of a BLCA sample from Gene Expression Omnibus (GEO). The Cancer Genome Atlas BLCA cohort was used as the training dataset. Three cohorts from GEO, 35 clinical samples from the local hospital, and in vitro cell experiments were used for validation. The unsupervised clustering based on the 12 genes was associated with the prognosis and the tumor immunity. Through least absolute shrinkage and selection operator regression and random forest algorithm, G protein subunit gamma 11 (GNG11) and inhibitor of DNA binding 1 (ID1) of the 12 genes were determined as significant prognosis predictors and then included in the multivariate Cox regression model. The model was a reliable and robust prognosis biomarker across multiple large-scale cohorts (pooled HR = 1.76, 95% CI = 1.41-2.20). The tight association between the model and BLCA malignant degree was demonstrated in the local cohort (P < 0.01). The model could also predict the immunotherapeutic sensitivity, which was confirmed by the tumor immune dysfunction and exclusion algorithm (P < 0.0001) and IMvigor210 cohort (P < 0.0001). At last, in vitro cell experiments in IM-9 and GM12878 B cells indicated that GNG11 and ID1 were involved in the cellular aging process. Collectively, a B cell senescence-related gene signature was constructed to evaluate the prognosis and immunotherapeutic response in BLCA, providing novel insights into the biological mechanisms.


Assuntos
Senescência Celular , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Algoritmos , Análise por Conglomerados , Imunoterapia
12.
Mol Biol Rep ; 49(12): 11643-11652, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169895

RESUMO

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) promote tumor immune tolerance and cause tumor immunotherapy failure. In this study, we found that high PMN-MDSCs infiltration, overexpressed fatty acid transporter protein 2 (FATP2) and underexpressed receptor-interacting protein kinase 3 (RIPK3) existed in the mouse and human bladder cancer tissues. However, the related mechanisms remain largely unknown. METHODS AND RESULTS: Both FATP2 and RIPK3 expressions were associated with clinical stage. FATP2 knockout or up-regulating RIPK3 reduced the synthesis of prostaglandin E2 (PGE2) in PMN-MDSCs, attenuated the suppressive activity of PMN-MDSCs on CD8+ T cells functions and inhibited the tumor growth. There was a PGE2-mediated feedback loop between FATP2 and RIPK3 pathways, which markedly promoted the immunosuppressive activity of PMN-MDSCs. Combination therapy with inhibition of FATP2 and activation of RIPK3 can effectively inhibit tumor growth. CONCLUSIONS: This study demonstrated that a feedback loop between FATP2 and RIPK3 pathways in PMN-MDSCs significantly promoted the synthesis of PGE2, which severely impaired the CD8+ T cell functions. This study may provide new ideas for immunotherapy of human bladder cancer.


Assuntos
Proteínas de Transporte de Ácido Graxo , Células Supressoras Mieloides , Proteína Serina-Treonina Quinases de Interação com Receptores , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Dinoprostona/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Células Supressoras Mieloides/metabolismo , Neutrófilos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Retroalimentação Fisiológica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
13.
Front Immunol ; 13: 954836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119059

RESUMO

Accurate prediction of Bacillus Calmette-Guérin (BCG) response is essential to identify bladder cancer (BCa) patients most likely to respond sustainably, but no molecular marker predicting BCG response is available in clinical routine. Therefore, we first identified that fibroblast growth factor binding protein 1 (FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1 had a poor outcome for BCa patients in the E-MTAB-4321 and GSE19423 datasets. These different expression genes associated with FGFBP1 expression are mainly involved in neutrophil activation, neutrophil-mediated immunity, and tumor necrosis factor-mediated signal pathways in biological processes. A significant positive correlation was observed between FGFBP1 expression and regulatory T-cell (Treg) infiltration by the Spearman correlation test in the BCG cohort (r = 0.177) and The Cancer Genome Atlas (TCGA) cohort (r = 0.176), suggesting that FGFBP1 may influence the response of BCa patients to BCG immunotherapy through immune escape. Though FGFBP1 expression was positively correlated with the expressions of PD-L1, CTLA4, and PDCD1 in TCGA cohort, a strong association between FGFBP1 and PD-L1 expression was only detected in the BCG cohort (r = 0.750). Furthermore, elevated FGFBP1 was observed in BCa cell lines and tissues in comparison to corresponding normal controls by RT-qPCR, Western blotting, and immunohistochemical staining. Increased FGFBP1 was further detected in the failures than in the responders by immunohistochemical staining. Notably, FGFBP1 is positively associated with PD-L1 expression in BCa patients with BCG treatment. To sum up, FGFBP1 in BCa tissue could be identified as a promising biomarker for the accurate prediction of BCG response in BCa.


Assuntos
Mycobacterium bovis , Neoplasias da Bexiga Urinária , Antígeno B7-H1 , Vacina BCG/uso terapêutico , Biomarcadores , Antígeno CTLA-4 , Fatores de Crescimento de Fibroblastos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Fator de Necrose Tumoral alfa/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
14.
Front Genet ; 13: 923768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147509

RESUMO

The tumor microenvironment (TME) not only provides fertile soil for tumor growth and development but also widely involves immune evasion as well as the resistance towards therapeutic response. Accumulating interest has been attracted from the biological function of TME to its effects on patient outcomes and treatment efficacy. However, the relationship between the TME-related gene expression profiles and the prognosis of bladder cancer (BLCA) remains unclear. The TME-related genes expression data of BLCA were collected from The Cancer Genome Atlas (TCGA) database. NFM algorithm was used to identify the distinct molecular pattern based on the significantly different TME-related genes. LASSO regression and Cox regression analyses were conducted to identify TME-related gene markers related to the prognosis of BLCA and to establish a prognostic model. The predictive efficacy of the risk model was verified through integrated bioinformatics analyses. Herein, 10 TME-related genes (PFKFB4, P4HB, OR2B6, OCIAD2, OAS1, KCNJ15, AHNAK, RAC3, EMP1, and PRKY) were identified to construct the prognostic model. The established risk scores were able to predict outcomes at 1, 3, and 5 years with greater accuracy than previously known models. Moreover, the risk score was closely associated with immune cell infiltration and the immunoregulatory genes including T cell exhaustion markers. Notably, the predictive power of the model in immunotherapy sensitivity was verified when it was applied to patients with metastatic urothelial carcinoma (mUC) undergoing immunotherapy. In conclusion, TME risk score can function as an independent prognostic biomarker and a predictor for evaluating immunotherapy response in BLCA patients, which provides recommendations for improving patients' response to immunotherapy and promoting personalized tumor immunotherapy in the future.

15.
BMC Cancer ; 21(1): 1293, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861847

RESUMO

BACKGROUND: Bladder cancer (BC) is one of the most common malignancies globally. Early diagnosis of it can significantly improve patients' survival and quality of life. Urinary exosomes (UEs)-derived miRNAs might be a promising biomarker for BC detection. METHOD: A total of 12 patients with BC and 4 non-cancerous participants (as healthy control) were recruited from a single center between March 2018 and December 2019 as the discovery set. Midstream urine samples from each participants were collected and high-throughput sequencing and differentially expression analysis were conducted. Combined with miRNA expression profile of BC tissue from The Cancer Genome Atlas (TCGA), miRNAs biomarkers for BC were determined. Candidate miRNAs as biomarkers were selected followed by verification with a quantitative reverse-transcription polymerase chain reaction assay in an independent validation cohort consisting of 53 BC patients and 51 healthy controls. The receiver-operating characteristic (ROC) curve was established to evaluate the diagnostic performance of UE-derived miRNAs. The possible mechanism of miRNAs were revealed by bioinformatic analysis and explored in vitro experiments. RESULTS: We identified that miR-93-5p, miR-516a-5p were simultaneously significantly increased both in UEs from BC compared with healthy control and BC tissue compared with normal tissue, which were verified by RT-qPCR in the validation cohort. Subsequently, the performance to discover BC of the miR-93-5p, miR-516a-5p was further verified with an area under ROC curve (AUC) of 0.838 and 0.790, respectively, which was significantly higher than that of urine cytology (AUC = 0.630). Moreover, miR-93-5p was significantly increased in muscle-invasive BC compared with non-muscle-invasive BC with an AUC of 0.769. Bioinformatic analysis revealed that B-cell translocation gene 2(BTG2) gene may be the hub target gene of miR-93-5p. In vitro experiments verified that miR-93-5p suppressed BTG2 expression and promoted BC cells proliferation, invasion and migration. CONCLUSION: Urine derived exosomes have a distinct miRNA profile in BC patients, and urinary exosomal miRNAs could be used as a promising non-invasive tool to detect BC. In vitro experiments suggested that miR-93-5p overexpression may contribute to BC progression via suppressing BTG2 expression.


Assuntos
Exossomos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transfecção
16.
Front Cell Dev Biol ; 9: 777349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957107

RESUMO

Long-chain non-coding RNA (LncRNA) has been found to play an important role in the regulation of the occurrence and progression of renal cell carcinoma (RCC). In this study, we demonstrated that LncRNA NEAT1 expression and m6A methylation level was decreased in RCC tissues. Further, the downregulated expression level of LncRNA NEAT1 was associated with poor prognosis for RCC patients. Then we used CRIPSR/dCas13b-METTL3 to methylate LncRNA NEAT1 in RCC cells. The results showed that the expression level of LncRNA NEAT1 was upregulated after methylated by dCas13b-METTL3 in RCC cells. And the proliferation and migration ability of RCC cells was decreased after methylated LncRNA NEAT1. Finally, we examined the effect of LncRNA NEAT1 hypermethylation on the transcriptome. We found differentially expressed genes in RCC cells were associated with "cGMP-PKG signaling pathway", "Cell adhesion molecules" and "Pathways in cancer". In conclusion, CRISPR/Cas13b-METTL3 targeting LncRNA NEAT1 m6A methylation activates LncRNA NEAT1 expression and provides a new target for treatment of RCC.

17.
Front Med (Lausanne) ; 8: 721554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595190

RESUMO

Objective: To avoid over-treatment of low-risk prostate cancer patients, it is important to identify clinically significant and insignificant cancer for treatment decision-making. However, no accurate test is currently available. Methods: To address this unmet medical need, we developed a novel gene classifier to distinguish clinically significant and insignificant cancer, which were classified based on the National Comprehensive Cancer Network risk stratification guidelines. A non-invasive urine test was developed using quantitative mRNA expression data of 24 genes in the classifier with an algorithm to stratify the clinical significance of the cancer. Two independent, multicenter, retrospective and prospective studies were conducted to assess the diagnostic performance of the 24-Gene Classifier and the current clinicopathological measures by univariate and multivariate logistic regression and discriminant analysis. In addition, assessments were performed in various Gleason grades/ISUP Grade Groups. Results: The results showed high diagnostic accuracy of the 24-Gene Classifier with an AUC of 0.917 (95% CI 0.892-0.942) in the retrospective cohort (n = 520), AUC of 0.959 (95% CI 0.935-0.983) in the prospective cohort (n = 207), and AUC of 0.930 (95% 0.912-CI 0.947) in the combination cohort (n = 727). Univariate and multivariate analysis showed that the 24-Gene Classifier was more accurate than cancer stage, Gleason score, and PSA, especially in the low/intermediate-grade/ISUP Grade Group 1-3 cancer subgroups. Conclusions: The 24-Gene Classifier urine test is an accurate and non-invasive liquid biopsy method for identifying clinically significant prostate cancer in newly diagnosed cancer patients. It has the potential to improve prostate cancer treatment decisions and active surveillance.

18.
Aging (Albany NY) ; 13(16): 20468-20480, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34424218

RESUMO

Survival outcomes in advanced urothelial cancer (UC) are dismal. Over the past years, immunotherapy remains an evolving treatment modality for these patients. This meta-analysis was performed to comprehensively evaluate the efficacy and safety of immune checkpoint inhibitors. For this purpose, 18 clinical trials comprising a total of 3,144 patients were identified from the PubMed database up to September 2020. Overall, the objective response rate (ORR) to PD-1/PD-L1 inhibitors was 0.20 [95% confidence intervals (CI) 0.17-0.23]. Furthermore, the pooled 1-year overall survival (OS) and 1-year progression-free survival (PFS) rates were 0.43 (95% CI 0.33-0.53) and 0.19 (95% CI 0.17-0.21), respectively. The summary rates of any-grade and grade ≥3 adverse events (AEs) were 0.66 (95% CI 0.58-0.74) and 0.13 (95% CI 0.09-0.18), respectively. Among the different subgroups, PD-1/PD-L1 inhibitors elicited a promising ORR in patients with lymph node-only metastasis compared to those with visceral metastasis (0.41 VS. 0.17). Additionally, patients with primary tumor in the lower tract had higher ORR compared to those with primary tumor in the upper tract (0.24 VS. 0.15). Briefly speaking, this immunotherapy protocol showed an encouraging efficacy and acceptable safety profile in the treatment of advanced UC. Moreover, our findings provided potential clinical significance for patients with lymph node-only metastasis or primary tumor in the lower tract. However, these exciting findings need further confirmation.


Assuntos
Antígeno B7-H1/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Imunoterapia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias da Bexiga Urinária/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , Intervalo Livre de Progressão , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade
20.
J Cancer ; 12(7): 2000-2009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753998

RESUMO

Program death receptor-1 (PD-1) and T-cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) play an important role in tumor immune evasion. PD-1 blockade could produce an effective anti-tumor effect but the response rate was low due to lacking of tumor infiltrating lymphocytes (TILs) and existing of other negative regulatory pathways. Streptavidin(SA)-GM-CSF surface-anchored tumor cells vaccine could induce specific anti-tumor immune response. However, this vaccine failed to induce regression of established tumor because it also up-regulated PD-1 expression on tumor cells dependent on IFNγ and up-regulated PD-1/Tim-3 expression on CD8+ TILs. Subsets of CD8+ TILs assay showed that PD-1 expression was closely associated with CD8+ TILs exhaustion, and Tim-3 expression was closely correlated with secretion function but not proliferation of CD8+ TILs. Sequential administration of anti-PD-1 and anti-Tim-3 could further improve the efficacy of SA-GM-CSF-anchored vaccine therapy, and tumor regression was noted in over 50%. This triple therapy improves the specific cytotoxic activity and decreased the apoptosis of CD8+ TILs. These findings indicated that this triple therapy could induce a more robust anti-tumor immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...